新万博软件2018|ManBeTx最新动态|ManBeTx移动版

这些奖项的评选结果是由“猎豹大数据”平台上的数据表现、网友微信投票、评委会打分加权得出。见习爱神——光系神兽族治疗型幻宠大陆世界里,光系幻宠常被幻宠师当成天使一般的存在,能够拥有一只光系神兽更是荣耀。直到现在,围绕脱欧产生的不确定性仍在威胁着英国经济。客场出战的比利时在先丢一球的情况下凭借着卢卡库与德布劳内的进球2-1逆转瑞士。

【高二数学】圆的一般方程

作者:张静 来源: 发布时间:2018年06月14日
 

4.1.2 圆的一般方程

 

【课时目标】 1.正确理解圆的一般方程及其特点.2.会由圆的一般方程求其圆心、半径.3.会依据不同条件利用待定系数法求圆的一般方程,并能简单应用.4.初步掌握点的轨迹方程的求法,并能简单应用.

 

1.圆的一般方程的定义

(1)当________________时,方程x2y2DxEyF=0叫做圆的一般方程,其圆心为____________,半径为______________________.

(2)当D2E2-4F=0时,方程x2y2DxEyF=0表示点________________.

(3)当__________________时,方程x2y2DxEyF=0不表示任何图形.

2.由圆的一般方程判断点与圆的位置关系

已知点M(x0y0)和圆的方程x2y2DxEyF=0(D2E2-4F>0).,则其位置关系如下表:

 

位置关系

代数关系

M在圆外

x0(2)y0(2)Dx0Ey0F________0

M在圆上

x0(2)y0(2)Dx0Ey0F________0

M在圆内

x0(2)y0(2)Dx0Ey0F________0

 

 

一、选择题

1.圆2x2+2y2+6x-4y-3=0的圆心坐标和半径分别为(  )

A.,1(3)4(19)             B.(3,2)和2(19)

C.,1(3)2(19)           D.,-1(3)2(19)

2.方程x2y2+4x-2y+5m=0表示圆的条件是(  )

A.4(1)<m<1                  B.m>1

C.m<4(1)                    D.m<1

3.M(3,0)是圆x2y2-8x-2y+10=0内一点,过M点最长的弦所在的直线方程是(  )

A.xy-3=0             B.xy-3=0

C.2xy-6=0            D.2xy-6=0

4.圆x2y2-2x+4y+3=0的圆心到直线xy=1的距离为(  )

A.2       B.2(2)       C.1       D.

5.已知圆x2y2-2ax-2y+(a-1)2=0(0<a<1),则原点O在(  )

A.圆内                B.圆外

C.圆上                D.圆上或圆外

6.若圆Mx轴与y轴上截得的弦长总相等,则圆心M的轨迹方程是(  )

A.xy=0             B.xy=0

C.x2y2=0            D.x2y2=0

 

二、填空题

7.如果圆的方程为x2y2kx+2yk2=0,那么当圆面积最大时,圆心坐标为________.

8.已知圆Cx2y2+2xay-3=0(a为实数)上任意一点关于直线lxy+2=0的对称点都在圆C上,则a=________.

9.已知圆的方程为x2y2-6x-8y=0,设该圆过点(3,5)的最长弦和最短弦分别为ACBD,则四边形ABCD的面积为________.

 

三、解答题

10.平面直角坐标系中有A(-1,5),B(5,5),C(6,-2),D(-2,-1)四个点能否在同一个圆上?

 

 

 

 

 

11.如果方程x2y2-2(t+3)x+2(1-4t2)y+16t4+9=0表示一个圆.

(1)求t的取值范围;

(2)求该圆半径r的取值范围.

 

 

 

 

 

 

 

 

能力提升

12.求经过两点A(4,2)、B(-1,3),且在两坐标轴上的四个截距之和为2的圆的方程.

 

 

 

 

 

 

 

 

 

13.求一个动点P在圆x2y2=1上移动时,它与定点A(3,0)连线的中点M的轨迹方程.

 

 

 

 

 

 

 

 

1.圆的一般方程x2y2DxEyF=0,来源于圆的标准方程(xa)2+(yb)2r2.在应用时,注意它们之间的相互转化及表示圆的条件.

2.圆的方程可用待定系数法来确定,在设方程时,要根据实际情况,设出方程,以便简化解题过程.

3.涉及到的曲线的轨迹问题,要求作简单的了解,能够求出简单的曲线的轨迹方程,并掌握求轨迹方程的一般步骤.

 

 

4.1.2 圆的一般方程  答案

 

知识梳理

1.(1)D2E2-4F>0 2(E) 2(1)

(2)2(E)

(3)D2E2-4F<0

2.> = <

作业设计

1.C [由一般方程圆心2(E),半径r2(1)两公式易得答案.]

2.D [表示圆应满足D2E2-4F>0.]

3.B [过M最长的弦应为过M点的直径所在直线.]

4.D [先求出圆心坐标(1,-2),再由点到直线距离公式求之.]

5.B [先化成标准方程(xa)2+(y-1)2=2a,将O(0,0)代入可得a2+1>2a(0<a<1),即原点在圆外.]

6.D [圆心应满足yxy=-x,等价于x2y2=0.]

7.(0,-1)

解析 r2(1)2(1)

k=0时,r最大,此时圆面积最大,圆的方程可化为x2y2+2y=0,

x2+(y+1)2=1,圆心坐标为(0,-1).

8.-2

解析 由题意知圆心2(a)应在直线lxy+2=0上,即-1+2(a)+2=0,解得

a=-2.

9.20

解析 点(3,5)在圆内,最长弦|AC|即为该圆直径,

∴|AC|=10,最短弦BDAC,∴|BD|=4,S四边形ABCD2(1)|AC|�|BD|=20.

10.解 设过ABC三点的圆的方程为x2y2DxEyF=0,

6D-2E+F=-40(5D+5E+F=-50),解得F=-20(E=-2)

所以过ABC三点的圆的方程为x2y2-4x-2y-20=0.

将点D(-2,-1)代入上述方程等式不成立.

ABCD四点不能在同一个圆上.

11.解 (1)方程x2y2-2(t+3)x+2(1-4t2)y+16t4+9=0表示一个圆必须有:

D2E2-4F=4(t+3)2+4(1-4t2)2-4(16t4+9)>0,

即:7t2-6t-1<0,

∴-7(1)<t<1.

(2)该圆的半径r满足:

r24(D2+E2-4F)

=(t+3)2+(1-4t2)2-(16t4+9)

=-7t2+6t+1=-77(3)27(16)

r27(16),∴r7(7)

12.解 设圆的一般方程为x2y2DxEyF=0,令y=0,得x2DxF=0,所以圆在x轴上的截距之和为x1x2=-D;令x=0,得y2EyF=0,所以圆在y轴上的截距之和为y1y2=-E

由题设,x1x2y1y2=-(DE)=2,

所以DE=-2.              ①

A(4,2)、B(-1,3)两点在圆上,

所以16+4+4D+2EF=0,    ②

1+9-D+3EF=0,          ③

由①②③可得D=-2,E=0,F=-12,

故所求圆的方程为x2y2-2x-12=0.

13.解 设点M的坐标是(xy),点P的坐标是(x0y0).由于点A的坐标为(3,0)且M是线段AP的中点,所以x2(x0+3)y2(y0)于是有x0=2x-3,y0=2y

因为点P在圆x2y2=1上移动,所以点P的坐标满足方程x0(2)y0(2)=1,

则(2x-3)2+4y2=1,整理得2(3)2y24(1)

所以点M的轨迹方程为2(3)2y24(1)

 

 

 

点击数: 【字体: 收藏 打印文章 查看评论
相关信息
    没有关键字相关信息!
相关信息
没有相关内容
观后心情
感动 同情 无聊 愤怒 搞笑 难过 高兴 路过
联系我们  |  网站留言  |  友情链接  |  版权声明  |  管理登陆

远安县第一高级中学版权所有

网站备案许可证号:鄂ICP备0500248号

联系电话:0717-3812164

地址:湖北省宜昌市远安县鸣凤镇凤祥路8号