2.1.2 空间中直线与直线之间的位置关系
【课时目标】 1.会判断空间两直线的位置关系.2.理解两异面直线的定义,会求两异面直线所成的角.3.能用公理4解决一些简单的相关问题.
1.空间两条直线的位置关系有且只有三种:______________、________________、________________.
2.异面直线的定义
________________________________的两条直线叫做异面直线.
3.公理4:平行于同一条直线的两条直线____________.
4.等角定理:空间中如果两个角的两边分别对应________,那么这两个角________或________.
5.异面直线所成的角:直线a,b是异面直线,经过空间任一点O,作直线a′,b′,使________,________,我们把a′与b′所成的______________叫做异面直线a与b所成的角(或夹角).
如果两条直线所成的角是________,那么我们就说这两条异面直线互相垂直,两条异面直线所成的角的取值范围是________.
一、选择题
1.分别在两个平面内的两条直线间的位置关系是( )
A.异面 B.平行
C.相交 D.以上都有可能
2.若a和b是异面直线,b和c是异面直线,则a和c的位置关系是( )
A.异面或平行 B.异面或相交
C.异面 D.相交、平行或异面
3.分别和两条异面直线平行的两条直线的位置关系是( )
A.一定平行 B.一定相交
C.一定异面 D.相交或异面
4.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是( )
A.空间四边形 B.矩形
C.菱形 D.正方形
5.给出下列四个命题:
①垂直于同一直线的两条直线互相平行;
②平行于同一直线的两直线平行;
③若直线a,b,c满足a∥b,b⊥c,则a⊥c;
④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线.
其中假命题的个数是( )
A.1 B.2 C.3 D.4
6.如图所示,已知三棱锥A-BCD中,M、N分别为AB、CD的中点,则下列结论正确的是( )
A.MN≥2(AC+BD)
B.MN≤2(AC+BD)
C.MN=2(AC+BD)
D.MN<2(AC+BD)
二、填空题
7.空间两个角α、β,且α与β的两边对应平行且α=60�,则β为________.
8.已知正方体ABCD—A′B′C′D′中:
(1)BC′与CD′所成的角为________;
(2)AD与BC′所成的角为________.
9.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:
①AB⊥EF;
②AB与CM所成的角为60�;
③EF与MN是异面直线;
④MN∥CD.
以上结论中正确结论的序号为________.
三、解答题
10.空间四边形ABCD中,AB=CD且AB与CD所成的角为30�,E、F分别是BC、AD的中点,求EF与AB所成角的大小.
11.已知棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是棱CD、AD的中点.
求证:(1)四边形MNA1C1是梯形;
(2)∠DNM=∠D1A1C1.
能力提升
12.如图所示,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填序号).
13.正方体AC1中,E、F分别是面A1B1C1D1和AA1DD1的中心,则EF和CD所成的角是( )
A.60� B.45� C.30� D.90�
1.判定两直线的位置关系的依据就在于两直线平行、相交、异面的定义.很多情况下,定义就是一种常用的判定方法.另外,我们解决空间有关线线问题时,不要忘了我们生活中的模型,比如说教室就是一个长方体模型,里面的线线关系非常丰富,我们要好好地利用它,它是我们培养空间想象能力的好工具.
2.在研究异面直线所成角的大小时,通常把两条异面直线所成的角转化为两条相交直线所成的角.将空间问题向平面问题转化,这是我们学习立体几何的一条重要的思维途径.需要强调的是,两条异面直线所成角的范围为(0�,90�],解题时经常结合这一点去求异面直线所成的角的大小.
作异面直线所成的角,可通过多种方法平移产生,主要有三种方法:①直接平移法(可利用图中已有的平行线);②中位线平移法;③补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).
2.1.2 空间中直线与直线之间的位置关系 答案
知识梳理
1.相交直线 平行直线 异面直线
2.不同在任何一个平面内
3.互相平行
4.平行 相等 互补
5.a′∥a b′∥b 锐角(或直角) 直角 (0�,90�]
作业设计
1.D
2.D [异面直线不具有传递性,可以以长方体为载体加以说明a、b异面,直线c的位置可如图所示.]
3.D
4.B [
易证四边形EFGH为平行四边形.
又∵E,F分别为AB,BC的中点,
∴EF∥AC,
又FG∥BD,
∴∠EFG或其补角为AC与BD所成的角.
而AC与BD所成的角为90�,
∴∠EFG=90�,
故四边形EFGH为矩形.]
5.B [①④均为假命题.①可举反例,如a、b、c三线两两垂直.
④如图甲时,c、d与异面直线l1、l2交于四个点,此时c、d异面,一定不会平行;
当点A在直线a上运动(其余三点不动),会出现点A与B重合的情形,如图乙所示,此时c、d共面相交.
]
6.D
[如图所示,取BC的中点E,连接ME、NE,则ME=2AC,
NE=2BD,
所以ME+NE=2(AC+BD).
在△MNE中,有ME+NE>MN,
所以MN<2(AC+BD).]
7.60�或120�
8.(1)60� (2)45�
解析
连接BA′,则BA′∥CD′,连接A′C′,则∠A′BC′就是BC′与CD′所成的角.
由△A′BC′为正三角形,
知∠A′BC′=60�,
由AD∥BC,知AD与BC′所成的角就是∠C′BC.
易知∠C′BC=45�.
9.①③
解析 把正方体平面展开图还原到原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.
10.解 取AC的中点G,
连接EG、FG,
则EG∥AB,GF∥CD,
且由AB=CD知EG=FG,
∴∠GEF(或它的补角)为EF与AB所成的角,∠EGF(或它的补角)为AB与CD所成的角.
∵AB与CD所成的角为30�,
∴∠EGF=30�或150�.
由EG=FG知△EFG为等腰三角形,当∠EGF=30�时,∠GEF=75�;
当∠EGF=150�时,∠GEF=15�.
故EF与AB所成的角为15�或75�.
11.证明 (1)如图,连接AC,
在△ACD中,
∵M、N分别是CD、AD的中点,
∴MN是三角形的中位线,
∴MN∥AC,MN=2AC.
由正方体的性质得:AC∥A1C1,AC=A1C1.
∴MN∥A1C1,且MN=2A1C1,即MN≠A1C1,
∴四边形MNA1C1是梯形.
(2)由(1)可知MN∥A1C1,又因为ND∥A1D1,
∴∠DNM与∠D1A1C1相等或互补.
而∠DNM与∠D1A1C1均是直角三角形的锐角,
∴∠DNM=∠D1A1C1.
12.②④
解析 ①中HG∥MN.③中GM∥HN且GM≠HN,
∴HG、MN必相交.
13.B [
连接B1D1,则E为B1D1中点,
连接AB1,EF∥AB1,
又CD∥AB,∴∠B1AB为异面直线EF与CD所成的角,即∠B1AB=45�.]
上一篇:【高二数学】空间点、直线、平面之间的位置关系[ 06-14 ]
下一篇:【高二数学】空间中直线与平面之间的位置关系[ 06-14 ]
远安县第一高级中学版权所有
网站备案许可证号:鄂ICP备0500248号
联系电话:0717-3812164
地址:湖北省宜昌市远安县鸣凤镇凤祥路8号