第二章 点、直线、平面之间的位置关系
�2.1 空间点、直线、平面之间的位置关系
2.1.1 平 面
【课时目标】 掌握文字、符号、图形语言之间的转化,理解公理1、公理2、公理3,并能运用它们解决点共线、线共面、线共点等问题.
1.公理1:如果一条直线上的________在一个平面内,那么________________在此平面内.
符号:________________________________.
2.公理2:过________________________________的三点,________________一个平面.
3.公理3:如果两个不重合的平面有________公共点,那么它们有且只有________过该点的公共直线.
符号:________________________________.
4.用符号语言表示下列语句:
(1)点A在平面α内但在平面β外:______________.
(2)直线l经过面α内一点A,α外一点B:________________________.
(3)直线l在面α内也在面β内:____________.
(4)平面α内的两条直线M、n相交于A:________________________.
一、选择题
1.下列命题:
①书桌面是平面;
②8个平面重叠起来,要比6个平面重叠起来厚;
③有一个平面的长是50 M,宽是20 M;
④平面是绝对的平、无厚度,可以无限延展的抽象数学概念.
其中正确命题的个数为( )
A.1 B.2 C.3 D.4
2.若点M在直线b上,b在平面β内,则M、b、β之间的关系可记作( )
A.M∈b∈β B.M∈b⊂β
C.M⊂b⊂β D.M⊂b∈β
3.已知平面α与平面β、γ都相交,则这三个平面可能的交线有( )
A.1条或2条 B.2条或3条
C.1条或3条 D.1条或2条或3条
4.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是( )
A.A∈a,A∈β,B∈a,B∈β⇒a⊂β
B.M∈α,M∈β,N∈α,N∈β⇒α∩β=MN
C.A∈α,A∈β⇒α∩β=A
D.A、B、M∈α,A、B、M∈β,且A、B、M不共线⇒α、β重合
5.空间中可以确定一个平面的条件是( )
A.两条直线 B.一点和一直线
C.一个三角形 D.三个点
6.空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有( )
A.2个或3个 B.4个或3个
C.1个或3个 D.1个或4个
二、填空题
7.把下列符号叙述所对应的图形(如图)的序号填在题后横线上.
(1)Aα,a⊂α________.
(2)α∩β=a,PD/∈α且Pβ________.
(3)a⊄α,a∩α=A________.
(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O________.
8.已知α∩β=M,a⊂α,b⊂β,a∩b=A,则直线M与A的位置关系用集合符号表示为________.
9.下列四个命题:
①两个相交平面有不在同一直线上的三个公共点;
②经过空间任意三点有且只有一个平面;
③过两平行直线有且只有一个平面;
④在空间两两相交的三条直线必共面.
其中正确命题的序号是________.
三、解答题
10.如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.
11.如图所示,四边形ABCD中,已知AB∥CD,AB,BC,DC,AD(或延长线)分别与平面α相交于E,F,G,H,求证:E,F,G,H必在同一直线上.
能力提升
12.空间中三个平面两两相交于三条直线,这三条直线两两不平行,证明此三条直线必相交于一点.
13.如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1的中点.
求证:(1)C1、O、M三点共线;(2)E、C、D1、F四点共面;
(3)CE、D1F、DA三线共点.
1.证明几点共线的方法:先考虑两个平面的交线,再证有关的点都是这两个平面的公共点.或先由某两点作一直线,再证明其他点也在这条直线上.
2.证明点线共面的方法:先由有关元素确定一个基本平面,再证其他的点(或线)在这个平面内;或先由部分点线确定平面,再由其他点线确定平面,然后证明这些平面重合.注意对诸如“两平行直线确定一个平面”等依据的证明、记忆与运用.
3.证明几线共点的方法:先证两线共点,再证这个点在其他直线上,而“其他”直线往往归结为平面与平面的交线.
第二章 点、直线、平面之间的位置关系
�2.1 空间点、直线、平面之间的位置关系
2.1.1 平 面
答案
知识梳理
1.两点 这条直线 A∈l,B∈l,且A∈α,B∈α⇒l⊂α
2.不在一条直线上 有且只有
3.一个 一条 P∈α,且P∈β⇒α∩β=l,且P∈l
4.(1)A∈α,A∉β (2)A∈α,B∉α且A∈l,B∈l (3)l⊂α且l⊂β (4)M⊂α,n⊂α且M∩n=A
作业设计
1.A [由平面的概念,它是平滑、无厚度、可无限延展的,可以判断命题④正确,其余的命题都不符合平面的概念,所以命题①、②、③都不正确,故选A.]
2.B 3.D
4.C [∵A∈α,A∈β,
∴A∈α∩β.
由公理可知α∩β为经过A的一条直线而不是A.
故α∩β=A的写法错误.]
5.C
6.D [四点共面时有1个平面,四点不共面时有4个平面.]
7.(1)C (2)D (3)A (4)B
8.A∈M
解析 因为α∩β=M,A∈a⊂α,所以A∈α,同理A∈β,故A在α与β的交线M上.
9.③
10.解 很明显,点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.
∵E∈AC,AC⊂平面SAC,
∴E∈平面SAC.
同理,可证E∈平面SBD.
∴点E在平面SBD和平面SAC的交线上,连接SE,
直线SE是平面SBD和平面SAC的交线.
11.证明 因为AB∥CD,所以AB,CD确定平面AC,AD∩α=H,因为H∈平面AC,H∈α,由公理3可知,H必在平面AC与平面α的交线上.同理F、G、E都在平面AC与平面α的交线上,因此E,F,G,H必在同一直线上.
12.证明
∵l1⊂β,l2⊂β,l1l2,
∴l1∩l2交于一点,记交点为P.
∵P∈l1⊂β,P∈l2⊂γ,
∴P∈β∩γ=l3,
∴l1,l2,l3交于一点.
13.证明 (1)∵C1、O、M∈平面BDC1,
又C1、O、M∈平面A1ACC1,由公理3知,点C1、O、M在平面BDC1与平面A1ACC1的交线上,
∴C1、O、M三点共线.
(2)∵E,F分别是AB,A1A的中点,
∴EF∥A1B.
∵A1B∥CD1,
∴EF∥CD1.
∴E、C、D1、F四点共面.
(3)由(2)可知:四点E、C、D1、F共面.
又∵EF=2A1B.
∴D1F,CE为相交直线,记交点为P.
则P∈D1F⊂平面ADD1A1,P∈CE⊂平面ADCB.
∴P∈平面ADD1A1∩平面ADCB=AD.
∴CE、D1F、DA三线共点.
上一篇:【高二数学】空间几何体的表面积与体积[ 06-14 ]
下一篇:【高二数学】空间中直线与直线之间的位置关系[ 06-14 ]
远安县第一高级中学版权所有
网站备案许可证号:鄂ICP备0500248号
联系电话:0717-3812164
地址:湖北省宜昌市远安县鸣凤镇凤祥路8号