�1.1 空间几何体的结构
1.1.1 柱、锥、台、球的结构特征
【课时目标】 认识柱、锥、台、球的结构特征,并能运用这些特征描述现实生活中简单物体的结构.
1.一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都________________,由这些面所围成的多面体叫做棱柱.
2.一般地,有一个面是多边形,其余各面都是________________________________,由这些面所围成的多面体叫做棱锥.
3.以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫________.
4.以直角三角形的一条________所在直线为旋转轴,其余两边旋转形成的面围成的旋转体叫做圆锥.
5.(1)用一个________________________的平面去截棱锥,底面与截面之间的部分叫做棱台.
(2)用一个________于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.
6.以半圆的________所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球.
一、选择题
1.棱台不具备的性质是( )
A.两底面相似 B.侧面都是梯形
C.侧棱都相等 D.侧棱延长后都交于一点
2.下列命题中正确的是( )
A.有两个面平行,其余各面都是四边形的几何体叫棱柱
B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱
C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱
D.用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台
3.下列说法正确的是( )
A.直角三角形绕一边旋转得到的旋转体是圆锥
B.夹在圆柱的两个截面间的几何体还是一个旋转体
C.圆锥截去一个小圆锥后剩余部分是圆台
D.通过圆台侧面上一点,有无数条母线
4.下列说法正确的是( )
A.直线绕定直线旋转形成柱面
B.半圆绕定直线旋转形成球体
C.有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台
D.圆柱的任意两条母线所在的直线是相互平行的
5.观察下图所示几何体,其中判断正确的是( )
A.①是棱台 B.②是圆台
C.③是棱锥 D.④不是棱柱
6.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是( )
二、填空题
7.由若干个平面图形围成的几何体称为多面体,多面体最少有________个面.
8.将等边三角形绕它的一条中线旋转180�,形成的几何体是________.
9.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图?其序号是________.
三、解答题
10.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.
11.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角是45�,求这个圆台的高、母线长和底面半径.
能力提升
12.下列四个平面图形中,每个小四边形皆为正方形,其中可以沿两个正方形的相邻边折叠围成一个正方体的图形的是( )
13.如图,在底面半径为1,高为2的圆柱上A点处有一只蚂蚁,它要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?
1.学习本节知识,要注意结合集合的观点来认识各种几何体的性质,还要注意结合动态直观图从运动变化的观点认识棱柱、棱锥和棱台的关系.
2.棱柱、棱锥、棱台中的基本量的计算,是高考考查的热点,要注意转化,即把三维图形化归为二维图形求解.
在讨论旋转体的性质时轴截面具有极其重要的作用,它决定着旋转体的大小、形状,旋转体的有关元素之间的关系可以在轴截面上体现出来.轴截面是将旋转体问题转化为平面问题的关键.
3.几何体表面距离最短问题需要把表面展开在同一平面上,然后利用两点间距离的最小值是连接两点的线段长求解.
上一篇:(高二数学)组合典型例题[ 06-14 ]
下一篇:【高二数学组】简单组合体的结构特征[ 06-14 ]
远安县第一高级中学版权所有
网站备案许可证号:鄂ICP备0500248号
联系电话:0717-3812164
地址:湖北省宜昌市远安县鸣凤镇凤祥路8号